Note
Click here to download the full example code
Conservation of LexA DNA-binding siteΒΆ
The web page on sequence logos on Wikipedia shows the sequence logo of the LexA-binding motif of Gram-positive bacteria. In this example we look at the other side: What is the amino acid sequence logo of the DNA-binding site of the LexA repressor? What is the consensus sequence?
We start by searching the NCBI Entrez database for lexA gene entries in the UniProtKB database and downloading them afterwards as GenPept file. In order to ensure that the file contains the desired entries, we check the entires for their definition (title) and source (species).
# Code source: Patrick Kunzmann
# License: BSD 3 clause
import numpy as np
import matplotlib.pyplot as plt
import biotite.sequence as seq
import biotite.sequence.io.fasta as fasta
import biotite.sequence.io.genbank as gb
import biotite.sequence.graphics as graphics
import biotite.application.clustalo as clustalo
import biotite.database.entrez as entrez
# Search for protein products of LexA gene in UniProtKB/Swiss-Prot database
query = entrez.SimpleQuery("lexA", "Gene Name") \
& entrez.SimpleQuery("srcdb_swiss-prot", "Properties")
# Search for the first 200 hits
# More than 200 UIDs are not recommended for the EFetch service
# for a single fetch
uids = entrez.search(query, db_name="protein", number=200)
file = entrez.fetch_single_file(
uids, None, db_name="protein", ret_type="gp"
)
# The file contains multiple concatenated GenPept files
# -> Usage of MultiFile
multi_file = gb.MultiFile.read(file)
# Separate MultiFile into single GenBankFile instances
files = [f for f in multi_file]
print("Definitions:")
for file in files[:20]:
print(gb.get_definition(file))
print()
print("Sources:")
for file in files[:20]:
print(gb.get_source(file))
Definitions:
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
RecName: Full=LexA repressor.
Sources:
Listeria welshimeri serovar 6b str. SLCC5334
Leptospira interrogans serovar Copenhageni str. Fiocruz L1-130
Salmonella enterica subsp. enterica serovar Typhimurium str. LT2
Brucella melitensis bv. 1 str. 16M
Fibrobacter succinogenes subsp. succinogenes S85
Clostridioides difficile 630 (Clostridium difficile 630)
Mycobacterium avium subsp. paratuberculosis K-10
Pectobacterium carotovorum subsp. carotovorum PC1
Listeria monocytogenes serotype 4b str. CLIP 80459
Salmonella enterica subsp. enterica serovar Paratyphi C str.
Bifidobacterium longum subsp. infantis ATCC 15697 = JCM 1222 = DSM
Salmonella enterica subsp. enterica serovar Schwarzengrund str.
Salmonella enterica subsp. enterica serovar Paratyphi A str.
Salmonella enterica subsp. enterica serovar Newport str. SL254
Salmonella enterica subsp. enterica serovar Heidelberg str. SL476
Limosilactobacillus reuteri JCM 1112
Leptospira biflexa serovar Patoc strain 'Patoc 1 (Paris)'
Leptospira biflexa serovar Patoc strain 'Patoc 1 (Ames)'
Escherichia coli str. K-12 substr. DH10B
Beijerinckia indica subsp. indica ATCC 9039
The names of the sources are too long to be properly displayed later on. Therefore, we write a function that creates a proper abbreviation for a species name.
def abbreviate(species):
# Remove possible brackets
species = species.replace("[","").replace("]","")
splitted_species= species.split()
return "{:}. {:}".format(splitted_species[0][0], splitted_species[1])
print("Sources:")
all_sources = [abbreviate(gb.get_source(file)) for file in files]
for source in all_sources[:20]:
print(source)
Sources:
L. welshimeri
L. interrogans
S. enterica
B. melitensis
F. succinogenes
C. difficile
M. avium
P. carotovorum
L. monocytogenes
S. enterica
B. longum
S. enterica
S. enterica
S. enterica
S. enterica
L. reuteri
L. biflexa
L. biflexa
E. coli
B. indica
Much better. For the alignment (required for sequence logo) we need to extract the slice of the sequence, that belongs to the DNA-binding site. Hence, we simply index the each sequence with the feature for the binding site and remove those sequences, that do not have a record specifying the required feature.
But we have still an issue: Some species seem to be overrepresented, as they show up multiple times. The reason for this is that some species, like M. tuberculosis, are represented by multiple strains with (almost) equal LexA sequences. To reduce this bias, we only want each species to occur only a single time. So we use a set to store the source name of sequences we already listed and ignore all further occurences of that source species.
# List of sequences
binding_sites = []
# List of source species
sources = []
# Set for ignoring already listed sources
listed_sources = set()
for file, source in zip(files, all_sources):
if source in listed_sources:
# Ignore already listed species
continue
bind_feature = None
annot_seq = gb.get_annotated_sequence(
file, include_only=["Site"], format="gp"
)
# Find the feature for DNA-binding site
for feature in annot_seq.annotation:
# DNA binding site is a helix-turn-helix motif
if "site_type" in feature.qual \
and feature.qual["site_type"] == "DNA binding" \
and "H-T-H motif" in feature.qual["note"]:
bind_feature = feature
if bind_feature is not None:
# If the feature is found,
# get the sequence slice that is defined by the feature...
binding_sites.append(annot_seq[bind_feature])
# ...and save the respective source species
sources.append(source)
listed_sources.add(source)
print("Binding sites:")
for site in binding_sites[:20]:
print(site)
Binding sites:
VREIGEAVGLASSSTVHGHLA
IREIGDEFGITAKGAYDHLK
RAEIAQRLGFRSPNAAEEHLK
FDEMKEALDLASKSGIHRLIT
VREIGNHFDISSTNGVRSILA
VREICTAVGLRSTSTVHSHLN
IREIGDAVGLTSTSSVAHQLR
RAEIAQQLGFRSPNAAEEHLK
VREIGEAVGLASSSTVHGHLA
FREIGNAAGLKSPSSVKHQLQ
VREICSAVGLSSTSTVHGHIS
IREIGDQFGITAKGAYDHLK
RAEIAQRLGFRSPNAAEEHLK
FDEMKEALDLRSKSGIHRLVM
RVEIAREIGFKSPNAAEEHLK
FDEMKDALGLKSKSGIHRLIT
MREIGDAVGLASLSSVTHQLN
VREIGEAVGLASSFTVHGHLS
RAEIAAELGFRSANAAEEHLR
RAEIAQRLGFRSPNAAEEHLK
Now we can perform a multiple sequence alignment of the binding site sequences. Here we use Clustal Omega to perform this task. Since we have up to 200 sequences we visualize only a small portion of the alignment.
alignment = clustalo.ClustalOmegaApp.align(binding_sites)
fig = plt.figure(figsize=(4.5, 4.0))
ax = fig.add_subplot(111)
graphics.plot_alignment_similarity_based(
ax, alignment[:,:20], labels=sources[:20], symbols_per_line=len(alignment)
)
# Source names in italic
ax.set_yticklabels(ax.get_yticklabels(), fontdict={"fontstyle":"italic"})
fig.tight_layout()

Finally we can generate our sequence logo and the consensus sequence.
profile = seq.SequenceProfile.from_alignment(alignment)
print("Consensus sequence:")
print(profile.to_consensus())
fig = plt.figure(figsize=(8.0, 3.0))
ax = fig.add_subplot(111)
graphics.plot_sequence_logo(ax, profile, scheme="flower")
ax.set_xticks([5,10,15,20])
ax.set_xlabel("Residue position")
ax.set_ylabel("Bits")
# Only show left and bottom spine
ax.spines["right"].set_visible(False)
ax.spines["top"].set_visible(False)
fig.tight_layout()
# sphinx_gallery_thumbnail_number = 2
plt.show()

Consensus sequence:
RREIADALGLRSPSAAHEHLK